

EC Duro-Bond Hypalon[®] Sheet Lining

Description

Duro-Bond Hypalon is an elastomeric sheet lining having excellent abrasion, heat, and corrosion resistance. It is available either as a precured lining or as an uncured lining that must be vulcanized with steam or hot air cured before it can be used. Sheet thicknesses of 120 mils (2.3 mm), 150 mils (3.4 mm), and 180 mils (4.6 mm) are available

Uses

Duro-Bond Hypalon is used as a lining material for resistance to chemical agents, heat, and abrasion. It is used for lining equipment such as concrete and steel tanks, agitators, shafts and troughs. It is used extensively in the handling and storage of waste acids.

Advantages

Duro-Bond Hypalon has good electrical and heat resistance plus superior resistance to ozone and oxidizing chemicals. It is generally capable **of** resisting strong acid concentrations at elevated temperatures.

Duro-Bond Hypalon may be applied to a variety of surfaces and in various thicknesses. Precured Hypalon lining does not require equipment for vulcanization. It can be used to line concrete tanks and trenches in which steam or hot air curing is impractical.

Uncured Hypalon is applied while in the soft, unvulcanized state. It readily conforms to curved surfaces and can be easily applied to a wide variety of complex shaped equipment before it is vulcanized.

Service Temperature

The maximum temperature for which **Duro-Bond Hypalon** is recommended is 200°F (93°C). At elevated temperatures elastomers will harden and age prematurely, resulting in cracks and lining failure. It is sometimes desirable to provide thermal insulation, thereby increasing the service life of the lining. Corrosion resistant red shale or carbon brick are generally used for this purpose. One or more courses of brick bonded with one of the Electro Chemical corrosion resistant cements may be required to obtain the desired temperature reduction.

Chemical Resistance

The information listed may be considered as a basis for recommendation, but not as a guarantee, unless sold and installed by Electro Chemical Engineering & Manufacturing Co. For resistance of **Duro-Bond Hypalon** to chemicals not listed, contact our Engineering Department at:

inquiry@electrochemical.net or 1-800-235-1885.

[®] Hypalon is a Registered Trademark of Dupont Dow Elastomers

Key to Chemical Resistance Chart

NR = Not Recommended

Max. Temp (°F) = Maximum at which the lining is recommended for continuous service. Max. Ethyl Chloride

		Max.	Ethyl Chloride		NR
Chemical	Remarks Tem	np (°F)	Ethylene Glycol		150
Acetic Acid. Dilute	<u></u>	NR			Max.
Acetic Acid, Glacial		NR	Chemical	Remarks Ten	np (°F)
Acetone		NR	Fatty Acids	. <u> </u>	NR
Alum: Ammonium		175	Ferric Chloride	pH over 6	100
Aluminum Chloride	pH over 6	175	Ferric Nitrate	pH over 6.5	125
Aluminum Hydroxide	•	150	Ferric Sulfate	•	125
Aluminum Nitrate	pH over 6.5	150	Ferrous Ammonium Sulfat	te	200
Aluminum Sulfate	•	175	Ferrous Chloride	pH over 6	175
Ammonia: Gas (dry)		NR	Ferrous Sulfate	•	175
Ammonia (Household)		NR	Fluoboric Acid		125
Ammonium Acetate, 10%	pH over 6	100	Fluorine Gas (wet)		NR
Ammonium Chloride	pH over 6	175	Fluorine Gas (dry)		NR
Ammonium Hydroxide		NR	Fluosilicic Acid		125
Ammonium Nitrate	pH over 6.5	175	Formaldehyde, 400/o		NR
Ammonium Sulfate		175	Formic Acid		NR
Aniline and Aniline Oil		NR	Gasoline		NR
Aromatic Hydrocarbons		NR	Glauber's Salts (Sodium S	Sulfate)	200
Barium Carbonate		200	Hydrobromic Acid		NR
Barium Chloride	pH over 6	200	Hydrochloric Acid		NR
Barium Nitrate	pH over 6.5	200	Hydrofluoric Acid		NR
Barium Sulfate		200	Hydrofluosilicic Acid		125
Benzene (coal tar)		NR	Hydrogen Peroxide		NR
Borax		200	Hydrogen Sulfide		NR
Boric Acid		200	Hypochlorous Acid		NR
Brine Solution		200	Kerosene		NR
Bromine		NR	Lead Chloride	pH over 6	150
Butane		NR	Lead Sulfate		175
Butyl Acetate		NR	Magnesium Carbonate	Basic	150
Butyl Alcohol (butanol)		NR	Magnesium Chloride	pH over 6	175
Butyric Acid		NR	Magnesium Hydroxide		150
Cadmium Cyanide		150	Magnesium Nitrate	pH over 6.5	150
Calcium Acetate		150	Magnesium Sulfate		175
Calcium Bisulfate		150	Malic Acid		80
Calcium Chloride	pH over 6	200	Manganese Sulfate		175
Calcium Nitrate	pH over 6.5	200	Methyl Alcohol (Methanol)		80
Calcium Sulfate		175	Methyl Chloride		NR
Carbolic Acid (phenol)		NR	Mineral Oils		NR
Carbon Bisulfide		NR	Muriatic Acid (Hydrochlori	c Acid)	NR
Carbon Dioxide (wet)		200	Nickel Acetate	pH over 6	125
Carbon Dioxide (dry)		200	Nickel Chloride	pH over 6	175
Carbon Tetrachloride		NR	Nickel Nitrate	pH over 6.5	150
Carbonic Acid		200	Nickel Sulfate		200
Chlorine, Dry		NR	Niter(Potassium Nitrate)	pH over 6.5	200
Chlorine, Wet		NR	Nitric Acid, 5%		100
Chlorine Dioxide		NR	Nitric Acid, 10%		NR
Chromic Acid		125	Nitric Acid, 25%		NR
Citric Acid		100	Nitric Acid, 40%		NR
Copper Nitrate	pH over 6.5	150	Nitrous Acid		NR
Copper Sultate		200	Oleum (Fuming Sulfuric A	.cid)	NR
Cottonseed Oil		NK	Uxalic Acid	`	1/5
Cresylic Acid		NK	Perchioric Acid (Dihydrate	;)	NR
Ethers		NK	Phenol (Carbolic Acid)		NR
Ethyl Acetate		NK	Plating Solution, Chrome		NR

Potassium Aluminum Sulfa	200	
Potassium Auricyanide	175	
Potassium Bisulfate		175
Potassium Carbonate		200
		Max.
<u>Chemical</u>	Remarks Tem	р (°F)
Potassium Chlorate		200
Potassium Chloride	pH over 6	200
Potassium Chromate	pH over 6	NR
Potassium Cyanide		150
Potassium Dichromate	pH over 6	175
Potassium Hydroxide, 25%	b	NR
Potassium Iodide	pH over 6.5	150
Potassium Nitrate	pH over 6.5	200
Potassium Permanganate	pH over 7.0	NR
Potassium Phosphate	Mono-Di/Tri-Basic	200
Potassium Silicate		NR
Potassium Sulfate		200
Propane		NR
Rochelle Salts (Potassium Se	200	
Sodium Bicarbonate		200
Sodium Carbonate		200

Sodium Chloride	pH over 6	200
		Max.
<u>Chemical</u>	Remarks Tem	<u>p (°F)</u>
Sodium Cyanide		150
Sodium Hydroxide, 25%		NR
Sodium Nitrate	pH over 6.5	200
Sodium Permanganate	pH over 7.0	NR
Sodium Phosphate	Mono-Di/Tri-Basic	200
Sodium Sulfate		200
Sodium Sulfite	pH over 6	150
Stannic Chloride	pH over 6	125
Stannous Chloride	pH over 6	150
Sulfuric Acid, 5%		175
Sulfuric Acid, 25%		175
Sulfuric Acid, 50%		150
Tartaric Acid		125
Trichloroethylene		NR
Water, Fresh		100
Water, Sea or Salt		200
Zinc Chloride	pH over 6	150
Zinc Sulfate		175

Physical Properties

Specific Gravity Tensile

Elongation Hardness Shore "A" Precured Uncured Water Absorption (immersion for 70 hr. @ 212° F) Flammability

Finish Color Thickness Abrasion Resistance Weathering Resistance Approx. 1.38 1,100 psi minimum (precured) 1,000 psi minimum (hot air cured) 400% minimum

Approx. 60 +/- 5 Approx. 65 +/- 5 (after cure) 2% maximum by volume

Burns, however, does not support combustion. Buffed Black 1/8", 3/16" and 1/4" Excellent Excellent

Application

The installation of <u>Precured</u> **Duro-Bond Hypalon** sheet lining is carried out in the following steps:

- 1. On metal surfaces sand or grit blast the areas to be lined to a gray-white metal. For concrete substrates acid washing is required in lieu of sand or grit blasting.
- 2. Apply one coat of adhesive primer cement immediately after blasting metal to prevent rusting. On concrete the primer should be applied after the acid washed surfaces are dry. Apply additional coat of primer cement, if necessary.
- 3. Apply required coats of intermediate or tie cement, allowing sufficient drying time so that the coat being applied does not lift up the preceding coat.
- 4. Edges of all sheets are skived at a 45° minimum angle from the top surface to the bottom of the sheet.

5. Apply the specified thickness of **Duro-Bond Hypalon** using the minimum number of sheets and splices consistent with good lining practice. Edges of sheets overlap approximately 2" unless restricted by dimensional tolerances. Lining sheets are washed with recommended solvent and allowed to dry before application. During application, sheets are rolled and all seams and corners carefully stitched to eliminate all trapped air between lining and cemented surfaces so there is full contact with all cemented areas.

The installation of <u>Uncured</u> **Duro-Bond Hypalon** sheet lining is described in the following steps:

- 1. The metal surfaces are sand or grit blasted to a gray-white metal.
- 2. One coat of primer is applied immediately after blasting metal to prevent rusting. Additional coats of primer are applied, if necessary.
- 3. The required coats of intermediate or tie cement are applied allowing sufficient drying time so that the coat being applied does not lift the preceding coat.
- 4. Edges of all sheets are skived at an angle from the top surface to the bottom of the sheet. A closed skive construction commonly known as down skive is used.
- 5. The Uncured Duro-Bond Hypalon sheet is wiped with the recommended solvent and allowed to dry before application. The sheet is then applied using the minimum number of seams consistent with good lining practice. Edges should overlap approximately 2" unless restricted by dimensional tolerances. During application, sheets are rolled and all seams and corners carefully stitched to eliminate all trapped air between lining and cemented surfaces.
- 6. Hot air is required to vulcanize Uncured **Duro-Bond Hypalon** to produce the required physical and chemical properties and adhesion to the metal substrate.

Method of Testing

All lined surfaces are inspected for blisters, lifted edges at seams and surface defects. Any special dimensional tolerances required, after lining, are also checked. All areas are then spark tested for leaks using a dielectric spark tester adjusted to 5,000 volts. The tester is moved constantly and quickly over the lining surface to prevent a burn through.

Repair Procedures

Most defects will be blisters between lining and substrate, blow holes where the lining is actually ruptured, small cracks in the lining or physical damage which may result in a scuffed or broken lining. In general, if such a defect occurs, the defective lining is removed to a point where firm adhesion to the substrate is found, a suitable repair made with the same or equivalent lining material (usually a precured sheet) and subsequently testing the repaired areas as described in "Method of Testing".

Additional Information

For additional technical or safety information, contact us at 1-800-235-1885, <u>www.electrochemical.net</u>, or <u>inquiry@electrochemical.net</u>.

Electro Chemical Engineering & Manufacturing Co. 750 Broad Street Emmaus, Pa 18049 Phone: 610-965-9061 FAX: 610-965-2595 Electro Chemical Engineering & Manufacturing Co. P.O. Box 1107 Port Allen, LA 70767 Phone: 225-336-0202 FAX: 225-336-0205

The data provided herein falls within the normal range of product properties, but they should not be used to establish specification limits nor used alone as the basis of design. Electro Chemical Engineering & Manufacturing Co. assumes no

obligation or liability for any advice furnished by it or for results obtained with respect to these products. All such data and advice is provided gratis and Buyer assumes sole responsibility for results obtained in reliance thereon.