

EC Duro-Bond Neoprene Sheet Lining

Description

Duro-Bond Neoprene is an elastomeric sheet lining having good abrasion and chemical resistance. It is available either as a precured lining or as an uncured lining that must be vulcanized with steam or hot air before it can be used. Sheet thicknesses of 60 mils (1.1 mm), 120 mils (2.3 mm), 150 mils (3.4 mm), and 180 mils (4.6 mm) are available.

Uses

Duro-Bond Neoprene is used as a lining material for resistance to chemical agents and abrasion. It is used for lining equipment such as concrete and steel tanks, agitators, shafts, and troughs.

Advantages

Duro-Bond Neoprene sheet lining may be applied to a variety of surfaces and in various thicknesses. Precured Neoprene lining does not require equipment for vulcanization. It can be used to line tanks and trenches in which steam or hot air curing is impractical.

Uncured Hypalon is applied while in the soft, pre-vulcanized state. It readily conforms to curved surfaces and can be easily applied to complex shaped equipment before it is vulcanized. When properly applied and cured, **Duro-Bond Neoprene sheet lining** exhibits excellent adhesive bond strength. On blasted steel the 90° peel-pull adhesion is in excess of 25 pounds per inch width in accordance with ASTM D903.

Service Temperature

The maximum temperature for which **Duro-Bond Neoprene** is recommended is 220°F (105°C). In elevated temperatures elastomers will harden and age prematurely, resulting in cracks and lining failure. It is sometimes desirable to provide thermal insulation, thereby increasing the service life of the lining. Corrosion resistant red shale or carbon brick are generally used for this purpose. One or more courses of brick bonded with one of **the Electro Chemical** corrosion resistant cements may be required to obtain the desired temperature reduction.

Chemical Resistance

The information listed may be considered as a basis for recommendation, but not as a guarantee, unless sold and installed by Electro Chemical Engineering & Manufacturing Co. For resistance of **Duro-Bond Neoprene** to chemicals not listed, contact our Engineering Department at:

inquiry@electrochemical.net or 1-800-235-1885.

Key to Chemical Resistance Chart: NR = Not Recommended Max. Temp (°F) = Maximum recommended for continuous service

	Ν	lax.	Calcium Hypochlorite		NR
<u>Reagent</u>	Remarks Tem	וף (°F)			
Acetic Acid		NR			Max.
Acetic Anhydride		NR	<u>Reagent</u>	Remarks To	<u>emp (°F)</u>
Acetone		NR	Calcium Nitrate	pH over 6.5	200
Aluminum Chloride	pH over 6	150	Calcium Oxide, Dry	-	200
Aluminum Fluoride		200	Calcium Sulfate		150
Aluminum Hydroxide		200	Carbolic Acid (phenol)		NR
Aluminum Nitrate	pH over 6.5	150	Carbon Bisulfide		NR
Aluminum Sulfate		200	Carbon Dioxide (wet)		200
Ammonia: Aqua 18-25%		NR	Carbon Dioxide (dry)		200
Ammonia: Gas (dry)		NR	Carbon Tetrachloride		NR
Ammonia Water		NR	Carbonic Acid		200
Ammonium Acetate	10% pH over 6		Castor Oil		120
Ammonium Bifluoride		NR	Caustic Soda (Sodium Hy	droxide)	200
Ammonium Carbonate		150	Chloracetic Acid		NR
Ammonium Chloride	pH over 6	180	Chlorinated Hydrocarbons	i	NR
Ammonium Fluoride		NR	Chlorine, dry		NR
Ammonium Hydroxide		NR	Chlorine, wet		NR
Ammonium Nitrate	pH over 6.5	200	Chlorine Dioxide		NR
Ammonium Phosphate		150	Chromic Acid		NR
Ammonium Sulfate		200	Citric Acid		150
Amyl Alcohol		180	Copper Chloride		200
Aniline and Aniline Oil		NR	Copper Nitrate	pH over 6.5	150
Aniline Hydrochloride		NR	Copper Sulfate		200
Aromatic Hydrocarbons		NR	Cresylic Acid		NR
Arsenic Acid		125	Ethanol (Ethyl Alcohol)		100
Barium Carbonate		150	Ethers		NR
Barium Chloride	pH over 6	175	Ethyl Acetate		NR
Barium Hydroxide		200	Ethyl Alcohol		100
Barium Sulfate		200	Ethyl Chloride		NR
Barium Sulfide		200	Ethylene Glycol		100
Barium Sulfite		NR	Fatty Acids		NR
Benzene (coal tar)		NR	Ferric Chloride	pH over 6	85
Benzene (gasoline type)		NR	Ferric Nitrate	pH over 6.5	200
Benzoic Acid		150	Ferric Sulfate	10	200
Black Liquor (sulfate)		100 ND	Ferrous Ammonium Sulfa		200
Bleach		NR	Ferrous Chloride	pH over 6	80
Borax Borio Acid		200 200	Ferrous Nitrate Ferrous Sulfate		200 150
Boric Acid Brine Solution		200	Fluoboric Acid		100
Bromine		NR	Fluorine Gas (wet)		NR
Butane		NR	Fluorine Gas (dry)		NR
Butyl Acetate		NR	Fluosilicic Acid		100
Butyl Alcohol (butanol)		NR	Formaldehyde		NR
Butyric Acid		NR	Formic Acid		NR
Cadmium Cyanide		150	Gasoline		NR
Calcium Acetate		NR	Glycerine		150
Calcium Bisulfate		150	Hydrobromic Acid		NR
Calcium Bisulfite		NR	Hydrochloric Acid		NR
Calcium Bleach (Calcium	Hypochlorite)	NR	Hydrofluoric Acid		NR
Calcium Carbonate		200	Hydrofluosilicic Acid		100
Calcium Chloride	pH over 6	175	Hydrogen Peroxide		NR
Calcium Hydroxide		200	Hydrogen Sulfide		NR
		1			

Hydrogen Sulfite		NR			
Hypochlorous Acid		NR			
Kerosene		NR		,	Max.
Lead Chloride	pH over 6	200	Reagent	<u>Remarks</u> <u>Ten</u>	
	•	Max.	Potassium Nitrate	pH over 6.5	200
Reagent		mp (°F)	Potassium Permanganate		NR
Lead Nitrate	pH over 6	120	Potassium Phosphate	Mono-Di/Tri-Basic	200
Lead Sulfate		100	Potassium Silicate	Mono Di, In Basio	200
Lime, dry (Calcium Oxide	;)	200	Potassium Sulfate		200
Lime, flaked (Calcium Hy		200	Potassium Sulfide		200
Lithium Chloride	pH over 6	200	Potassium Sulfite	pH over 6	150
Magnesium Carbonate	(Basic)	200	Potassium Thiosulfate	p	150
Magnesium Chloride	pH over 6	200	Propane		NR
Magnesium Hydroxide		200	Propyl Alcohol		120
Magnesium Nitrate	pH over 6.	200	Sodium Acid Sulfate		200
Magnesium Sulfate	•	200	Sodium Bicarbonate		200
Maleic Acid		NR	Sodium Bichromate	pH over 6	50
Malic Acid		NR	Sodium Bisulfate	-	170
Manganese Sulfate		200	Sodium Bisulfite		200
Mercuric Chloride	pH over 6	NR	Sodium Borate		200
Mercuric Cyanide		NR	Sodium Carbonate		200
Mercurous Nitrate		NR	Sodium Chloride	pH over 6	200
Methyl Alcohol	(Methanol)	100	Sodium Cyanide		150
Methyl Chloride		NR	Sodium Ferricyanide		NR
Mineral Oils		NR	Sodium Hydroxide		200
Muriatic Acid (Hydrochlor		NR	Sodium Hypochlorite	pH over 9	NR
Nickel Chloride	pH over 6	200	Sodium Nitrate	pH over 6.5	200
Nickel Nitrate	pH over 6.5	100	Sodium Nitrite	pH over 6.5	150
Nickel Sulfate		200	Sodium Perborate		200
Niter(Potassium Nitrate)	pH over 6.5	200	Sodium Phosphate	Mono-Di/Tri-Basic	200
Nitric Acid		NR	Sodium Silicate		200
Nitric Acid, 40%		NR	Sodium Sulfate		200
Nitrous Acid			Sodium Sulfite	pH over 6	150
Oleic Acid	(aid)		Sodium Thiosulfate	nH aver 6	150 NR
Oleum (Fuming Sulfuric / Oxalic Acid		NR 150	Stannic Chloride Stannous Chloride	pH over 6 pH over 6	NR
Palmitric Acid		NR	Stearic Acid	ph over o	NR
Perchloric Acid	(Dihydrate)	NR	Sulfite Liquors		120
Petroleum Oils, Crude	(Dillyulate)	NR	Sulfur Dioxide, wet		NR
Phenol(Carbolic Acid)		NR	Sulfuric Acid, 5%		180
Phosphoric Acid, 85%		150	Sulfuric Acid, 25%		170
Plating Solution, Cadmiu	m	150	Sulfuric Acid, 50%		75
Plating Solution, Chrome		150	Sulfuric Acid, 75%		NR
Plating Solution, Lead		150	Sulfurous Acid		NR
Potassium Acid Sulfate		200	Tannic Acid		NR
Potassium Bicarbonate		200	Tartaric Acid		100
Potassium Bichromate	pH over 6	150	Tin Chloride	pH over 6	NR
Potassium Bisulfate	•	150	Trichloroethylene	•	NR
Potassium Bisulfite		NR	Triethanolamine		NR
Potassium Carbonate		200	Trisodium Phosphate	pH under 6	200
Potassium Chloride	pH over 6	150	Turpentine		NA
Potassium Cyanide		150	Urea		150
Potassium Dichromate	pH over 6	NR	Water, Sea or Salt		200
Potassium Ferricyanide		NR	Zinc Acetate		NR
Potassium Hydroxide, 25		220	Zinc Chloride	pH over 6	150
Potassium Hydroxide, Sa	it. over 25%	220	Zinc Sulfate		150

Physical Properties

Specific Gravity

Tensile

Elongation Hardness Shore "A" Water Absorption (immersion for 4 days @ 212'F) Flammability

Finish Color Thickness Abrasion Resistance Weathering Resistance Ozone Resistance Hours Approx. 1.40 to 1.43 (precured) Approx. 1.49 (uncured) 1800psi minimum (precured) 1200psi minimum (uncured) Min. 300% Approx. 60 ± 10 15% maximum by volume

Burns, however, does not support combustion. Buffed Black 1/16", 1/8", 3/16" and 1/4" Excellent Excellent 100 ppm @ 1200 F over 300 hours meets requirements for Class E of ASTM D-2000.

Application

The installation of <u>Precured</u> **Duro-Bond Neoprene** elastomeric sheet lining is carried out as follows:

- 1. On metal surfaces sand or grit blast the areas to be lined to a gray-white metal. For concrete substrates acid washing is required in lieu of sand or grit blasting.
- 2. Apply one coat of adhesive primer cement immediately after blasting metal to prevent rusting. On concrete the primer should be applied after the acid washed surfaces are dry. Apply additional coat of primer cement, if necessary.
- 3. Apply required coats of intermediate or tie cement, allowing sufficient drying time so that the coat being applied does not lift up the preceding coat.
- 4. Apply the specified thickness of Precured **Duro-Bond Neoprene** using the minimum number of sheets and splices consistent with good lining practice. Edges of sheets overlap approximately 2" unless restricted by dimensional tolerances. Lining sheets are washed with recommended solvent and allowed to dry before application. During application, sheets are rolled and all seams and corners carefully stitched to eliminate all trapped air between lining and cemented surfaces so there is full contact with all cemented areas.
- Edges of all sheets are skived at a 45° minimum angle from the top surface to the bottom of the sheet. A closed skive construction commonly known as down skive is used wherever Possible. Open skived splices may be used when specified.

The installation of <u>Uncured</u> **Duro-Bond Neoprene** elastomeric sheet lining is carried out as follows:

- 1. The metal surfaces are sand or grit blasted to a gray-white metal. Special care is taken to insure that the metal is free of all mill scale, rust formations, oil and grease.
- 2. One coat of primer is applied immediately after blasting metal to prevent rusting. Additional coats of primer are applied if necessary.
- 3. The required coats of intermediate or tie cement are applied allowing sufficient drying time so that the coat being applied does not lift the preceding coat.

- 4. Edges of all sheets are skived at an angle from the top surface to the bottom of the sheet. A closed skive construction commonly known as a down skive is used wherever possible. Open skived splices may be used when specified.
- 5. The uncured sheet is wiped with the recommended solvent and allowed to dry before application. The sheet is then applied using the minimum number of seams consistent with good lining practice. Edges of sheet should over lap approximately 2" unless restricted by dimensional tolerances. During application, sheets are rolled and all seams and corners carefully stitched to eliminate all trapped air between lining and cemented surfaces.
- 6. Steam curing is required to vulcanize Uncured **Duro-Bond Neoprene** to produce the required physical and chemical properties and adhesion to the metal substrate.

Method of Testing

All lined surfaces are inspected for blisters, lifted edges at seams and surface defects. Any special dimensional tolerances required, after lining, are also checked. All areas are then spark tested for leaks using a dielectric spark tester adjusted to 5000 volts. The tester is moved constantly and quickly over the lining surface to prevent a burn through.

Repair Procedures

Most defects will be blisters between lining and substrate, blow holes where the lining is actually ruptured, small cracks in the lining or physical damage which may result in a scuffed or broken lining. In general, if such a defect occurs, the defective lining is removed to a point where firm adhesion to the substrate is found, a suitable repair made with the same or equivalent lining material (usually a precured sheet) and subsequently testing the repaired areas as described in "Method of Testing".

Additional Information

For additional technical or safety information, contact us at 1-800-235-1885, <u>www.electrochemical.net</u>, or <u>inquiry@electrochemical.net</u>.

Electro Chemical Engineering & Manufacturing Co. 750 Broad Street Emmaus, Pa 18049 Phone: 610-965-9061 FAX: 610-965-2595 Electro Chemical Engineering & Manufacturing Co. P.O. Box 1107 Port Allen, LA 70767 Phone: 225-336-0202 FAX: 225-336-0205

The data provided herein falls within the normal range of product properties, but they should not be used to establish specification limits nor used alone as the basis of design. Electro Chemical Engineering & Manufacturing Co. assumes no obligation or liability for any advice furnished by it or for results obtained with respect to these products. All such data and advice is provided gratis and Buyer assumes sole responsibility for results obtained in reliance thereon.