

EC Duro-Bond Rubber Sheet Linings

Description

Both Soft Natural Rubber and Hard Natural Rubber Linings are offered by Electro Chemical. Sheet thicknesses of 120 mils (2.3 mm), 150 mils (3.4 mm), and 180 mils (4.6 mm) are available.

Soft Natural Rubber

DURO-BOND S-123 is an uncured, soft three ply rubber sheet lining. The lining consists of a soft ply bonded to the substrate, a semi-hard center ply, and a soft natural outer ply.

Hard Natural Rubber

DURO-BOND SH-160 is an uncured, flexible, hard rubber sheet lining. It is a high grade, duplex rubber sheet lining consisting of a flexible ebonite semi-hard rubber layer backed with a thin layer of soft gum rubber. **DURO-BOND SH-160CL** is the same lining except that it is specifically formulated for chlorine service.

Uses

DURO-BOND S-123 Soft Natural Rubber is used as a general purpose lining material for resistance to chemical agents and abrasion. It is generally resistant to alkalis, numerous acidic and organic chemicals and inorganic salts, and is used for lining equipment such as steel tanks, agitated vessels, agitators and related process equipment. When resistance to a combination of high temperature conditions and abrasive situations is required, **DURO-BOND S-123** proves to be quite useful.

DURO-BOND SH-160 and SH-160CL Hard Natural Rubbers are used as a lining material when resistance to a wide variety of corrosive materials at continuous elevated temperatures is required. **DURO-BOND SH-160** and **DUROBOND SH-160CL** resists the low concentration, high temperature conditions generally found in water treatment facilities and other chemical environments including pickling solutions and strong acids at high temperatures.

Advantages

Soft Natural Rubber

The multiple ply construction of **DURO-BOND S-123** offers the advantages of the combined physical properties that are found in both hard and soft rubbers. The soft face ply provides excellent abrasion and impact resistance, the semi-hard center ply provides maximum chemical resistance, and the soft backing ply provides maximum flexibility and adhesion to the substrate.

Hard Natural Rubber

The outer layer of **DURO-BOND SH160** and **SH-160CL** provide the outstanding corrosion resistance to a variety of corrosive materials at continuous elevated temperatures typical of the chemical resistant

qualities of hard rubber. The inner layer that is bonded to the substrate is a flexible semi-hard rubber which resists temperature variations that can cause hard rubber linings to crack.

Since **DURO-BOND SH-160** and **DURO-BOND SH-160CL** are applied while in the soft uncured state, they readily conform to curved surfaces and can be applied to a wide variety of complex equipment. **DURO-BOND SH-160CL** has been specially formulated for service as a corrosion resistant tank lining for use in chlorine service.

When properly applied and steam cured both linings exhibit excellent adhesion bond strength. On blasted steel the 90° peel-pull adhesion is in excess of 25 pounds per linear inch in accordance with ASTM D903.

Service Temperature

The maximum recommended operating temperature for **DURO-BOND S-123**, **SH-160**, and **SH-160CL** is 200 ° F (93°C). At elevated temperatures rubber linings may harden and age prematurely, resulting in cracks and failure. It is sometimes desirable to provide thermal insulation, thereby increasing the service life of the lining. Corrosion resistant brick sheathing joined with one of the Electro Chemical corrosion resistant cements is used in conjunction with **Duro-Bond Rubber Linings** when excessive temperatures are present. A 4" thick brick sheathing will provide a temperature drop of approximately 50 °F and an 8" brick lining will provide a drop of approximately 100 °F. When carbon brick are used the temperature drop will be somewhat less.

Chemical Resistance

The information listed may be considered as a basis for recommendation, but not as a guarantee, unless sold and installed by Electro Chemical Engineering & Manufacturing Co. For resistance of **Duro-Bond Rubber Linings** to chemicals not listed, contact our Engineering Department at:

inquiry@electrochemical.net or 1-800-235-1885.

Key to Chemical Resistance Chart:

NR = Not Recommended

Max. Temp (°F) = Maximum at which the lining is recommended for continuous service.

		Max.	Ammonium Nitrate	pH over 6.	5 150
Chemical	Remarks Te	emp (°F)	Ammonium Phosphate		200
Acetic Acid (dilute)		NR	Ammonium Sulfate		200
Acetic Acid (glacial)		NR			Max.
Acetic Anhydride		NR	Chemical	Remarks	Temp (°F)
Acetone		NR	Ammonium Sulfide		150
Alum: ammonium		200	Amyl Alcohol		150
Alum: chrome		200	Aniline and Aniline Oil		NR
Alum: potassium		200	Aniline Hydrochloride		NR
Aluminum Chloride	pH over 6	200	Aromatic Hydrocarbons		NR
Aluminum Hydroxide		200	Arsenic Acid		150
Aluminum Sulfate		200	Barium Chloride	pH over 6	200
Ammonia: Aqua 18-25%		NR	Barium Hydroxide		150
Ammonia: Gas (dry)		NR	Barium Sulfate		200
Ammonia (Household)		NR	Barium Sulfide		175
Ammonium Acetate,	10% pH over 6	150	Barium Sulfite		200
Ammonium Bromide		175	Benzene (coal tar)		NR
Ammonium Carbonate		185	Benzene (gasoline type)		NR
Ammonium Chloride	pH over 6	200	Benzoic Acid		150
Ammonium Flouride		NR	Black Liquor (sulfate)		185
Ammonium Hydroxide		NR	Bleach		NR

Borax		200	Glauber's Salts (Sodium S	ulfate)	200
Boric Acid		200	Hydrobromic Acid		200
Brine Solution		200	Hydrochloric Acid		200
Bromine		NR	Hydrofluoric Acid		NR
Butane		NR	Hydrofluosilicic Acid		200
Butyl Acetate		NR	Hydrogen Peroxide		NR
		Max.			Max.
<u>Chemical</u>	<u>Remarks</u>	<u>Temp (°F)</u>	<u>Chemical</u>	<u>Remarks</u>	<u>Гетр (°F)</u>
Butyl Alcohol (butanol)		150	Hydrogen Sulfide		NR
Butyric Acid		100	Hydrogen Sulfite, dry		NR
Cadmium Cyanide		150	Hydrogen Sulfite, wet		NR
Calcium Acetate		NR	"Hypo"Photographic Solution	on (Sodium Thiosulf	
Calcium Bisulfite		150	Hypochlorous Acid		NR
Calcium Carbonate		200	Kerosene		NR
Calcium Chloride	pH over 6	200	Lacquer Solvents	_	NR
Calcium Hydroxide		175	Lactic Acid	Pure	150
Calcium Hypochlorite		NR	Lead Chloride		150
Calcium Nitrate	pH over 6.5		Lead Sulfate		150
Calcium Oxide, (dry)		200	Lime, dry (Calcium Oxide)		200
Calcium Sulfate		200	Lime, flaked (Calcium Hydr	oxide)	175
Carbolic Acid (phenol)		NR	Linseed Oil		NR
Carbon Bisulfide		NR	Magnesium Chloride	pH over 6	200
Carbon Dioxide (wet or dry)		175	Magnesium Citrate		150
Carbon Tetrachloride		NR	Magnesium Hydroxide	0.5	200
Carbonic Acid		200	Magnesium Nitrate	pH over 6.5	
Chloroacetic Acid		100	Magnesium Sulfate		200
Chlorinated Hydrocarbons	011.400.01	NR	Malic Acid		150
Chlorine (dry)	SH-160CL	200	Manganese Sulfate		150
Chlorine (wet)	SH-160CL	200	Mercuric Chloride	pH over 6	200
Chlorine Dioxide		NR	Mercuric Cyanide		150
Chromic Acid		NR 150	Mercuric Nitrate		150
Citric Acid		150	Mercurous Nitrate	Mathanal	150
Copper Carbonate		200	Methyl Alcohol	Methanol	150
Copper Chloride		100	Methyl Chloride		NR
Copper Cyanide	nH over 6 F	150 5 150	Mineral Oils	\ A aid\	NR 180
Copper Nitrate	pH over 6.5	150	Muriatic Acid (Hydrochloric Nickel Acetate	pH over 6	180
Copper Sulfate Cottonseed Oil		NR	Nickel Chloride	pH over 6	200
Cresylic Acid		NR	Nickel Nitrate	pH over 6.5	
Ethers		NR	Nickel Sulfate	pri over o.s	200
Ethyl Acetate		NR	Niter (Potassium Nitrate)	pH over 6.5	
Ethyl Alcohol	(Ethanol)	100	Nitric Acid, 5%	pri over o.o	NR
Ethyl Chloride	(Ethanol)	NR	Nitric Acid, 10%		NR
Ethylene Glycol		200	Nitric Acid, 25%		NR
Fatty Acids		NR	Nitric Acid, 40%		NR
Ferric Chloride	pH over 6	200	Nitrous Acid		150
Ferric Hydroxide		150	Oleum (Fuming Sulfuric Ac	cid)	NR
Ferric Nitrate	pH over 6.5		Oxalic Acid	,	150
Ferric Sulfate	•	200	Paimitric Acid		NR
Ferrous Chloride	pH over 6	200	Paraffin		NR
Ferrous Hydroxide	•	200	Perchloric Acid	(Dihydrate)	NR
Ferrous Nitrate		150	Petroleum Oils, Crude		NR
Ferrous Sulfate		200	Phenol (Carbolic Acid)		NR
Fluoboric Acid		200	Phosphoric Acid, 85% (Ove	er 85% Use Butyl) 200
Fluorine Gas (wet)		NR	Plating Solution, Brass		200
Fluorine Gas (dry)		NR	Plating Solution, Cadmium		200
Fluosilicic Acid		200	Plating Solution, Chrome		NR
Formaldehyde, 5%		150	Plating Solution, Copper		200
Formaldehyde, 40%		150	Plating Solution, Gold		200
Formic Acid		NR	Plating Solution, Lead		200
Gasoline		NR	Plating Solution, Nickel		200

Diating Colution Cilver		200	Sodium Borate		200
Plating Solution, Silver Plating Solution, Tin		200	Sodium Borate		200
		200			
Plating Solution, Zinc Potassium Alum		200			Max.
Potassium Aluminum Sulfate (Alum)	200	<u>Chemical</u>	<u>Remarks</u> T	emp (°F)
Potassium Antimonate	Alulli)	150	Sodium Carbonate		200
Folassium Antimonate			Sodium Chloride	pH over 6	200
		Max.	Sodium Cyanide		200
<u>Chemical</u>	Remarks To		Sodium Dichromate	pH over 6	NR
Potassium Auricyanide		150	Sodium Fluoride		NR
Potassium Bicarbonate		180	Sodium Hydroxide, 259		200
Potassium Bichromate	pH over 6	NR	Sodium Hypochlorite	pH over 9	NR
Potassium Bisulfate		200	Sodium Nitrate	pH over 6.5	180
Potassium Bisulfite		200	Sodium Perborate		150
Potassium Borate		200	Sodium Permanganate	pH over 7.0	200
Potassium Bromide		200	Sodium Peroxide		NR
Potassium Carbonate		200	Sodium Phosphate	Mono-Di or Tri-Basic	200
Potassium Chlorate		200	Sodium Salicylate		200
Potassium Chloride	pH over 6	200	Sodium Silicate		200
Potassium Chromate	pH over 6	NR	Sodium Sulfate		200
Potassium Cyanide		200	Sodium Sulfide		200
Potassium Cyprocyanide		200	Sodium Sulfite	pH over 6	200
Potassium Dichromate	pH over 6	NR	Sodium Thiosulfate	"Hypo"	200
Potassium Ferricyanide		NR	Stannic Chloride	pH over 6	200
Potassium Hydroxide, 25%	1.0	200	Stannous Chloride	pH over 6	200
Potassium Hydroxide Saturate		150	Stearic Acid		NR
Potassium Iodide	pH over 6.5	200	Sulfur Dioxide, Wet		150
Potassium Nitrate	pH over 6.5	180	Sulfuric Acid, 5%		185
Potassium Permanganate	pH over 7.0	150	Sulfuric Acid, 25%		175
	no-Di orTri-Basic	200	Sulfuric Acid, 50%		150
Potassium Salicylate		200	Sulfuric Acid, 75%		NR
Potassium Silicate		200	Sulfurous Acid		200
Potassium Sulfate		200	Tannic Acid		150
Potassium Sulfide		200	Tartaric Acid		200
Potassium Sulfite		200	Trichloroethylene		NR
Potassium Thiosulfate		200	Turpentine		NR
Propane		NR	Urea		185
Propionic Acid (dilute)		NR	Water, Acid Mine		150
Propyl Alcohol		150	Water, Fresh		185
Rochelle Salts (Potassium Sodium Titrate)		200 180	Water, Sea or Salt		200
Soap Solutions Sodium Antimonate		200	Zinc Chloride	pH over 6	200
Sodium Antimonate Sodium Bicarbonate		200	Zinc Sulfate		200
Sodium Bisulfate		200			

Physical Properties

	DURO-BOND	DURO-BOND	DURO-BOND	
<u>:</u>	S-123 (Soft Rubber)	SH-160 (Hard Rubber)	SH-160CL (Hard Rubber, Cl ₂)	
Specific Gravity	1.1	1.14	1.34	
Tensile Strength (minimum psi)	750	1500	1400	
Elongation (maximum)	100	10%.	10%	
Hardness Shore "A" (after cure)	65+5	85 ± 5	90 ± 5	
Water Absorption (max by volume		15%	15%	
(immersion for 96 hrs.@ 212°F	=)			
Color	Black	Black	Black	
Thickness	3/16",1/4",3/8"	1/8", 3/16", 1/4	1/8", 3/16", 1/4"	
Abrasion Resistance	Excellent	Excellent	Excellent	

Application

The installation of **Duro-Bond S-123**, **DURO-BOND SH-160** and **SH-160CL** sheet linings is described in the following steps:

- 1. The metal surfaces are sand or grit blasted to a gray-white metal.
- 2. One coat of primer is applied immediately after blasting metal to prevent rusting. Additional coats of primer are applied, if necessary.
- 3. The required coats of intermediate or tie cement are applied allowing sufficient drying time so that the coat being applied does not lift the preceding coat.
- 4. Edges of all sheets are skived at an angle from the top surface to the bottom of the sheet. A closed skive construction commonly known as a down skive is used.
- 5. The sheet is wiped with the recommended solvent and allowed to dry before application. The sheet is then applied using the minimum number of seams consistent with good lining practice. Edges should overlap approximately 2" unless restricted by dimensional tolerances. During application, sheets are rolled and all seams and corners carefully stitched to eliminate all trapped air between lining and cemented surfaces.
- 6. Steam is required to vulcanize all natural rubber linings to produce the required physical and chemical properties and adhesion to the metal substrate.

Method of Testing

All lined surfaces are inspected for blisters, lifted edges and surface defects. Any special dimensional tolerances required after lining are also checked.

All areas are spark tested for leaks using a dielectric spark tester adjusted to 5,000 volts. The tester is moved constantly and quickly over the lining surface to prevent a burn through.

Repair Procedures

Most defects will be blisters between lining and substrate, blow holes where the lining is actually ruptured, small cracks in the lining or physical damage which may result in a scuffed or broken lining.

If a defect occurs, the defective lining is removed to a point where firm adhesion to the substrate is found, a suitable repair made with the same or equivalent lining material usually using a chemical cure method and subsequently testing the repaired areas as described in "Method of Testing".

Additional Information

For additional technical or safety information, contact us at 1-800-235-1885, www.electrochemical.net, or inquiry@electrochemical.net.

Electro Chemical Engineering & Manufacturing Co. 750 Broad Street

Emmaus, Pa 18049 Phone: 610-965-9061 FAX: 610-965-2595 Electro Chemical Engineering & Manufacturing Co.

P.O. Box 1107 Port Allen, LA 70767 Phone: 225-336-0202 FAX: 225-336-0205

Electro Chemical Duro-Bond Rubber Linings

The data provided herein falls within the normal range of product properties, but they should not be used to establish specification limits nor used alone as the basis of design. Electro Chemical Engineering & Manufacturing Co. assumes no obligation or liability for any advice furnished by it or for results obtained with respect to these products. All such data and advice is provided gratis and Buyer assumes sole responsibility for results obtained in reliance thereon.